6 research outputs found

    Conical Existence of Closed Curves on Convex Polyhedra

    Get PDF
    Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that "live on a cone," in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone Lambda, with the apex a of Lambda enclosed inside (the image of) C; we also prove that each point of C is "visible to" a. In particular, we obtain that these curves have non-self-intersecting developments in the plane. Moreover, the curves we identify that live on cones to both sides support a new type of "source unfolding" of the entire surface of P to one non-overlapping piece, as reported in a companion paper.Comment: 24 pages, 15 figures, 6 references. Version 2 includes a solution to one of the open problems posed in Version 1, concerning quasigeodesic loop

    Reshaping Convex Polyhedra

    Full text link
    Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrov's Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.Comment: Research monograph. 234 pages, 105 figures, 55 references. arXiv admin note: text overlap with arXiv:2008.0175

    The Geometry Conference

    No full text
    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems

    Hermit Points on a Box

    No full text
    corecore